Đáp án:
`S={(\sqrt{5}-3)/2,(-\sqrt{5}-3)/2,(\sqrt{5}+3)/2,(-\sqrt{5}+3)/2}`
Giải thích các bước giải:
`x^3+1/x^3=6(x+1/x)(x ne 0)`
`<=>(x+1/x)(x^2-1+1/x^2)=6(x+1/x)`
`<=>(x+1/x)(x^2-1+1/x^2-6)=0`
`<=>((x^2+1)/x)(x^2+1/x^2-7)=0`
`(x^2+1)/x ne 0(AA x)`
`=>x^2+1/x^2-7=0`
`=>x^2+2+1/x^2-9=0`
`<=>(x+1/x)^2-3=0`
`<=>(x+1/x+3)(x+1/x-3)=0`
`+)x+1/x+3=0`
`<=>(x^2+3x+1)/x=0`
`<=>x^2+3x+1=0`
`<=>x^2+3x+9/4=5/4`
`<=>(x+3/2)^2=5/4`
`<=>x=(+-\sqrt{5}-3)/2`
`+)x+1/x-3=0`
`<=>(x^2-3x+1)/x=0`
`<=>x^2-3x+1=0`
`<=>x^2-3x+9/4=5/4`
`<=>(x-3/2)^2=5/4`
`<=>x=(+-\sqrt{5}+3)/2`
Vậy `S={(\sqrt{5}-3)/2,(-\sqrt{5}-3)/2,(\sqrt{5}+3)/2,(-\sqrt{5}+3)/2}`