Đáp án:
$\left\{ \begin{array}{l}
{R_3} = 60\Omega \\
{R_2} = 90\Omega \\
{R_1} = 180\Omega
\end{array} \right.$
Giải thích các bước giải:
Ta có:
$\begin{array}{l}
{R_1} = 2{R_2} = 3{R_3} \Rightarrow \left\{ \begin{array}{l}
{R_1} = 3{R_3}\\
{R_2} = 1,5{R_3}
\end{array} \right.\\
\dfrac{1}{{{R_{td}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} = \dfrac{1}{{3{R_3}}} + \dfrac{1}{{1,5{R_3}}} + \dfrac{1}{{{R_3}}} \Rightarrow {R_{td}} = \dfrac{{{R_3}}}{2}\\
{R_{td}} = \dfrac{U}{I} = \dfrac{{48}}{{1,6}} = 30\Omega \\
\Rightarrow {R_3} = 2{R_{td}} = 60\Omega \\
\Rightarrow \left\{ \begin{array}{l}
{R_2} = 90\Omega \\
{R_1} = 180\Omega
\end{array} \right.
\end{array}$