$x^4+2mx^2-m^2=0$
Đặt $t=x^2$
$\to t^2+2mt-m^2=0$
$\Delta'=m^2+m^2>0$
$\to$ phương trình ẩn $t$ luôn có hai nghiệm phân biệt
$m\ne 0\to m^2>0\to -m^2<0\quad\forall m$
Theo Viet, $t_1t_2=-m^2<0$
$\to t_1<0, t_2>0$
$t_1<0$ loại nên $x=\pm\sqrt{t_2}$
Vậy phương trình luôn có 2 nghiệm phân biệt.