Đáp án:
Giải thích các bước giải:
`a){n+1}/{n-2}` có giá trị là một số nguyên. (ĐK: `n` khác `2.`
Ta có: `{n+1}/{n-2} = {n-2+3}/{n-2} = {n-2}/{n-2} + 3/{n-2}=1+3/{n-2}`
Ta có `1` là số nguyên `=>` để `{n+1}/{n-2}` có giá trị là một số nguyên khi `3/{n-2}` có giá trị là một số nguyên
`<=> n-2 ∈ Ư(3) = {-1; 1; 3; -3}`
`=> n∈{1; 3; 5; -1} (tm)`
Vậy `n∈{1; 3; 5; -1}` thì `{n+1}/{n-2}` có giá trị là một số nguyên.
`b) {12n+1}/{30n+2}` là `1` phân số tối giản.
Gọi `d` là ước chung lớn nhất của `12n +1` và `30n+2` `(d>0)`
`=>12n+1` chia hết cho `d=> 5(12n+1)` chia hết cho `d <=> 60n + 5` chia hết cho `d` `(1)`
và `30n+2` chia hết cho `d=> 2.(30n+2)` chia hết cho `d <=> 60n +4` chia hết cho `d` `(2)`
Từ `(1)` và `(2)=> 60n + 5 - (60n +4)` chia hết cho `d`
`<=> 1` chia hết cho `d`
`=> d=1.`
`=> {12n+1}/{30n+2}` là `1` phân số tối giản.