a, $y'=-\dfrac{3(2x+1)'}{(2x+1)^2}=\dfrac{-6x}{(2x+1)^2}$
b, $y'=\dfrac{(2x+1)'(1-3x)-(2x+1)(1-3x)'}{(1-3x)^2}=\dfrac{2(1-3x)+3(2x+1)}{(1-3x)^2}=\dfrac{5}{(3x-1)^2}$
c, $y'=\dfrac{(1-x-x^2)'(1-x+x^2)-(1-x-x^2)(1-x+x^2)'}{(1-x+x^2)^2}=\dfrac{(x^2-x+1)(-2x-1)+(x^2+x-1)(2x+1)}{(x^2-x+1)^2}$
d, $y'=\dfrac{(x^2-3x+3)'(x-1)-(x^2-3x+3)(x-1)'}{(x-1)^2}=\dfrac{(2x-3)(x-1)-x^2+3x-3}{(x-1)^2}=\dfrac{2x^2-5x+3-x^2+3x-3}{(x-1)^2}=\dfrac{x^2-2x}{(x-1)^2}$
e, $y'=\dfrac{(2x^2-4x+1)'(x-3)-(2x^2-4x+1)(x-3)'}{(x-3)^2}=\dfrac{(4x-4)(x-3)-2x^2+4x-1}{(x-3)^2}=\dfrac{4x^2-16x+12-2x^2+4x-1}{(x-3)^2}=\dfrac{2x^2-12x+11}{(x-3)^2}$
f, $y'=\dfrac{(2x^2)'(x^2-2x-3)-2x^2(x^2-2x-3)'}{(x^2-2x-3)^2}=\dfrac{4x(x^2-2x-3)-2x^2(2x-2)}{(x^2-2x-3)^2}=\dfrac{-4x^2-12x}{(x^2-2x-3)^2}$