1) Để pt vô nghiệm:
$⇔Δ'<0$
$⇔m²-(m-1)(3m+7)<0$
$⇔m²-3m²-7m+3m+7<0$
$⇔-2m^2-4m+7<0$
$⇔m<\dfrac{-2-3√2}{2}$ hoặc $m>\dfrac{-2+3√2}{2}$
2) Để pt có 2 nghiệm trái dấu:
$⇔ac<0$
$⇔(m-1)(2m-7)<0$
$⇔m∈(1; 7/2)$
3) Để pt có 2 nghiệm pb:
$⇔Δ'>0$
$⇔(m-3)²-m.(3m+5)>0$
$⇔m²-6m+9-3m²-5m>0$
$⇔-2m^2-11m+9>0$
$⇔\dfrac{-11-√193}{4}<m<\dfrac{-11+√193}{4}$
4) Để pt có nghiệm $∀x∈R$:
$⇔\begin{cases} a>0\\ Δ≤0\end{cases}$
$⇔ \begin{cases} m-2>0\\ (m+1)^2-(m-2)(3m+7)≤0\end{cases}$
$⇔ \begin{cases} m>2\\ -2m^2+m+15≤0\end{cases}$
$⇔ \begin{cases} m>2\\ m≤-5/2, m≥3\end{cases}$
$⇔m≥3$