Đáp án:
$x=\dfrac{3\sqrt[3]{2}+7}{27}$
Giải thích các bước giải:
`-22/27 - ( 3x -7/9 ) ^3 = -24/27`
`<=>(3x-7/9)^3=-22/27-(-24/27)`
`<=>(3x-7/9)^3=-22/27+24/27`
`<=>(3x-7/9)^3=2/27`
`<=>(3x-7/9)^3=`$(\dfrac{\sqrt[3]{2}}{3})^3$
`<=>3x-7/9=`$\dfrac{\sqrt[3]{2}}{3}$
`<=>3x=`$\dfrac{3\sqrt[3]{2}}{9}$`+7/9`
`<=>3x=`$\dfrac{3\sqrt[3]{2}+7}{9}$
`<=>x=`$\dfrac{3\sqrt[3]{2}+7}{27}$
Vậy$x=\dfrac{3\sqrt[3]{2}+7}{27}$