$\lim_{x \to 1} \dfrac{ \sqrt[3]{3x+5}-2-(\sqrt[]{x-3}-2)}{x-1} $
= $\lim_{x \to 1} (\dfrac{3x+5-8}{\sqrt[3]{3x+5}^2+\sqrt[3]{(3x+5).8}+4 }.\dfrac{1}{x-1}-\dfrac{x-3+4} {\sqrt[]{x+3}+2 }.\dfrac{1}{x-1}) $
= $\lim_{x \to 1} \dfrac{3x-3}{ \sqrt[3]{3x+5}^2 +\sqrt[3]{(3x+5).8}+4}.\dfrac{1}{x-1}-\dfrac{x-1}{\sqrt[]{x+3}+2 } .\dfrac{1}{x-1} $
= $\lim_{x \to 1} \dfrac{3}{\sqrt[3]{3x+5}^2+\sqrt[3]{(3x+5).8}+4 }-\dfrac{1}{\sqrt[]{x+3}+2} $
=$\dfrac{3}{12}-\dfrac{1}{4} $
=0
xin hay nhất kì công quá