a/ \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+-...+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+-...+\dfrac{1}{2^9}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+-..+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+-.+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{10}}\)
b/ \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+-...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow3\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+-..+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{101}{1540}.3\)
\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+-..+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+-.+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Leftrightarrow x+3=308\)
\(\Leftrightarrow x=305\)
Vậy ..
c/ \(1+\dfrac{1}{3}+\dfrac{1}{6}+--+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{2007}{2009}\)
\(\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{6}+-...+\dfrac{1}{x\left(x+1\right):2}\right)=\dfrac{4016}{2009}.\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+-..+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+-..+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+-.+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2009}\)
\(\Leftrightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)
Vậy ..