`a)` `frac{1-6x}{x-2}+frac{9x+4}{x+2}=frac{x(3x-2)+1}{x^2-4}` ĐKXĐ: `x\ne±2`
`<=>frac{1-6x}{x-2}+frac{9x+4}{x+2}-frac{3x^2-2x+1}{x^2-4}=0`
`<=>frac(x+2)(1-6x)+(x-2)(9x+4)-(3x^2-2x+1)(x-2)(x+2)=0`
`=>(x+2)(1-6x)+(x-2)(9x+4)-(3x^2-2x+1)(x-2)(x+2)=0`
`<=>x-6x^2+2-12x+9x^2+4x-18x-8-3x^2+2x-1=0`
`<=>-23x-7=0`
`<=>-23x=7`
`<=>x=-7/23` (TMĐK)
Vậy `S={-7/23}`
`b)` `1+frac{x}{3-x}=frac{5x}{(x+2)(3-x)}+frac{2}{x+2}` ĐKXĐ: `x\ne-2;x\ne3`
`<=>frac{(3-x)(x+2)+x(x+2)}{(3-x)(x+2)}=frac{5x}{(x+2)(3-x)}+frac{2(3-x)}{(x+2)(3-x)}`
`=>(3-x)(x+2)+x(x+2)=5x+2(3-x)`
`<=>3x+6-x^2-2x+x^2+2x=5x+6-2x`
`<=>3x+6=3x+6`
`<=>3x+6-3x-6=0`
`<=>0x=0`
Vậy phương trình trên có vô số nghiệm khi `x\ne-2;x\ne3`
`c)` `frac{2}{x-1}+frac{2x+3}{x^2+x+1}=frac{(2x-1)(2x+1)}{x^3-1}` ĐKXĐ: `x\ne1`
`<=>frac{2(x^2+x+1)+(x-1)(2x+3)}{(x-1)(x^2+x+1)}=frac{(2x-1)(2x+1)}{(x-1)(x^2+x+1)}`
`=>2x^2+2x+2+(2x^2+3x-2x-3)=4x^2-1`
`<=>2x^2+2x+2+2x^2+x-3=4x^2-1`
`<=>4x^2+3x-1=4x^2-1`
`<=>4x^2+3x-1-4x^2+1=0`
`<=>3x=0`
`<=>x=0` (TMĐK)
Vậy phương trình có nghiệm `x=0`
`d)` `frac{x^3-(x-1)^3}{(4x+3)(x-5)}=frac{7x-1}{4x+3}-frac{x}{x-5}` ĐKXĐ: `x\ne-3/4;x\ne5`
`<=>frac{x^3-(x-1)^3}{(4x+3)(x-5)}=frac{(7x-1)(x-5)-x(4x+3)}{(x-5)(4x+3)}`
`=>x^3-(x-1)^3=(7x-1)(x-5)-x(4x+3)`
`<=>x^3-(x^3-3x^2+3x-1)=7x^2-x-35x+5-4x^2-3x`
`<=>x^3-x^3+3x^2-3x+1=3x^2-39x+5`
`<=>3x^2-3x+1=3x^2-39x+5`
`<=>3x^2-3x+1-3x^2+39x-5=0`
`<=>36x-4=0`
`<=>36x=4`
`<=>x=1/9` `(TMĐK)`
Vậy `S={1/9}`