$\text{Đáp án + Giải thích các bước giải:}$
`a//2xy=0`
`=>xy=0`
`=>` \(\left[ \begin{array}{l}x=0\\y=0\end{array} \right.\)
`\text{Vậy}` `x=y=0`
`b//(2x-3)(4x-5)=0`
`=>` \(\left[ \begin{array}{l}2x-3=0\\4x-5=0\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}2x=3\\4x=5\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=\dfrac{3}{2}\\x=\dfrac{5}{4}\end{array} \right.\)
`\text{Vậy}` `x∈{(3)/(2);(5)/(4)}`
`c//(2x-1)^{2}+(3y-2)^{4}=0`
`\text{Vì}` $\left\{\begin{matrix}(2x-1)^2≥0& \\(3y-2)^{4}≥0& \end{matrix}\right.$
`=>(2x-1)^{2}+(3y-2)^{4}≥0`
`\text{Mà theo đề bài :}` `(2x-1)^{2}+(3y-2)^{4}=0`
`=>` $\left\{\begin{matrix}(2x-1)^2=0& \\(3y-2)^{4}=0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}2x-1=0& \\3y-2=0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}2x=1& \\3y=2& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x=\dfrac{1}{2}& \\y=\dfrac{2}{3}& \end{matrix}\right.$
`\text{Vậy}` `(x;y)=((1)/(2);(2)/(3))`
`d//|x-1|+|3y+3|=0`
`\text{Vì}` $\left\{\begin{matrix}|x-1|≥0& \\|3y+3|≥0& \end{matrix}\right.$
`=>|x-1|+|3y+3|≥0`
`\text{Mà theo đề bài :}` `|x-1|+|3y+3|=0`
`=>` $\left\{\begin{matrix}|x-1|=0& \\|3y+3|=0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x-1=0& \\3y+3=0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x=1& \\3y=-3& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x=1& \\y=-1& \end{matrix}\right.$
`\text{Vậy}` `(x;y)=(1;-1)`
`e//(x+3)^{2}+(y-1)^{2}=0`
`\text{Vì}` $\left\{\begin{matrix}(x+3)^2≥0& \\(y-1)^2≥0& \end{matrix}\right.$
`=>(x+3)^{2}+(y-1)^{2}≥0`
`\text{Mà theo đề bài :}` `(x+3)^{2}+(y-1)^{2}=0`
`=>` $\left\{\begin{matrix}(x+3)^2=0& \\(y-1)^2=0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x+3=0& \\y-1=0& \end{matrix}\right.$
`=>` $\left\{\begin{matrix}x=-3& \\y=1& \end{matrix}\right.$
`\text{Vậy}` `(x;y)=(-3;1)`