Đáp án:
$\begin{array}{l}
\dfrac{{32}}{{3.7}} + \dfrac{6}{{7.41}} + \dfrac{9}{{41.10}} + \dfrac{1}{{10.51}} + \dfrac{{19}}{{51.14}}\\
= \dfrac{{32}}{{21}} + \dfrac{{6.5}}{{35.41}} + \dfrac{{5.9}}{{41.50}} + \dfrac{5}{{50.51}} + \dfrac{{19.5}}{{51.70}}\\
= \dfrac{{32}}{{21}} + 5.\left( {\dfrac{6}{{35.41}} + \dfrac{9}{{41.50}} + \dfrac{1}{{50.51}} + \dfrac{{19}}{{51.70}}} \right)\\
= \dfrac{{32}}{{21}} + 5.\left( {\dfrac{{41 - 35}}{{35.41}} + \dfrac{{50 - 41}}{{41.50}} + \dfrac{{51 - 50}}{{50.51}} + \dfrac{{70 - 51}}{{51.70}}} \right)\\
= \dfrac{{32}}{{21}} + 5.\left( {\dfrac{1}{{35}} - \dfrac{1}{{41}} + \dfrac{1}{{41}} - \dfrac{1}{{50}} + \dfrac{1}{{50}} - \dfrac{1}{{51}} + \dfrac{1}{{51}} - \dfrac{1}{{70}}} \right)\\
= \dfrac{{32}}{{21}} + 5.\left( {\dfrac{1}{{35}} - \dfrac{1}{{70}}} \right)\\
= \dfrac{{32}}{{21}} + 5.\dfrac{1}{{70}}\\
= \dfrac{{32}}{{21}} + \dfrac{1}{{14}}\\
= \dfrac{{32.2 + 3}}{{42}}\\
= \dfrac{{67}}{{42}}
\end{array}$