Đáp án:
Bài 2:
b, $\frac{14}{3x-12}$ -$\frac{2+x}{4x-4}$ =$\frac{3}{8-2x}$ $\frac{5}{6}$
⇔$\frac{14}{3(x-4)}$ -$\frac{2+x}{x-4}$ =$\frac{3}{2(4-x)}$ -$\frac{5}{6}$ (1)
ĐKXĐ: x$\neq$ 4
(1)⇔$\frac{14*2}{2*3*(x-4)}$ -$\frac{2*3*(2+x)}{2*3*(x-4)}$ =$\frac{-3*3}{2*3*(x-4)}$ -$\frac{5*(x-4)}{2*3*(x-4)}$
⇒14*2-2*3*(2+x)=-3*3-5*(x-4)
⇔28-6(2+x)=-9-5(x-4)
⇔28-12-6x=-9-5x+20
⇔-6x+5x=-9+20-28+12
⇔-x= -5
⇔x=5 ( Thỏa mãn ĐKXĐ )
c, $\frac{12}{1-9x2}$=$\frac{1-3x}{1+3x}$ -$\frac{1+3x}{1-3x}$
ĐKXĐ: 1-9x2$\neq$ 0 x$\neq$ $\frac{-1}{3}$
1+3x$\neq$ 0 ⇒ x$\neq$ $\frac{1}{3}$
1-3x$\neq$ 0
$\frac{12}{1-9x2}$=$\frac{1-3x}{1+3x}$ -$\frac{1+3x}{1-3x}$ ( 1)
(1)⇒ $\frac{12x}{(1-3x)(1+3x)}$ -$\frac{(1-3x)(1-3x)}{(1-3x)(1+3x)}$ +$\frac{(1+3x)(1+3x)}{(1-3x)(1+3x)}$ =0
⇔12-1+3x+3x-9x2+1+3x+3x+9x2=0
⇔12x+12=0
⇔12x= -12
⇔x=-1 ( nhận )
S={ -1 }
d, $\frac{x+5}{x2-5x}$ -$\frac{x+25}{2x2-50}$ =$\frac{x-5}{x2+10}$
ĐKXĐ: $x^{2}$ -5x$\neq$ 0
$2x^{2}$ -50$\neq$ 0 ⇒ x$\neq$ 0 ; x$\neq$ ±5
$2x^{2}$ +10$\neq$ 0
$\frac{x+5}{x2-5x}$ - $\frac{x+25}{2x2-50}$ =$\frac{x-5}{2x2+10x}$
⇔$\frac{x+5}{x(x-5)}$ -$\frac{x+25}{2(x+5)(x-5)}$ =$\frac{x-5}{2x(x+5)}$
⇔$\frac{2(x+5)2-x(x+25)}{2x(x+5)(x-5)}$=$\frac{(x-5)2}{2x(x+5)(x-5)}$
⇔2($x^{2}$ +10x+25)-($x^{2}$ +25x)=$x^{2}$ -10x+25
⇔$2x^{2}$ +20x+50-$x^{2}$ -25x=$x^{2}$ -10x+25
⇔$x^{2}$ -5x+50=$x^{2}$ -10+25
⇔5x=-25 ⇔ x=-5
e,$\frac{x+1}{x-1}$ -$\frac{x-1}{x+1}$ =$\frac{16}{x2-1}$
ĐKXĐ: x+1$\neq$ 0
x-1$\neq$ 0 ⇒ x$\neq$ ±1
$x^{2}$ -1$\neq$ 0
Ta có: $\frac{x+1}{x-1}$ -$\frac{x-1}{x+1}$ =$\frac{16}{x2-1}$
⇔$\frac{(x+1)2-(x-1)2}{x2-1}$ =$\frac{16}{x2-1}$
⇔$(x+1)^{2}$ -$(x-1)^{2}$ =16
⇔($x^{2}$ +2x+1)-($x^{2}$ +2x+1)=16
⇔4x=16 ⇔ x=4
f, Mink ko bt bn thông cảm
Chúc bn hc tốt!
Giải thích các bước giải: