Ta có : `2/(x(x^2+2)) = (x^2+2-x^2)/(x(x^2+2))`
`=(x^2+2)/(x(x^2+2))-x^2/(x(x^2+2))`
`=1/x-x/(x^2+2)`
Mà `2/(x(x^2+2))=a/x+(bx+c)/(x^2+2)`
`to 1/x-x/(x^2+2)=a/x+(bx+c)/(x^2+2)`
Đồng nhất hệ số ta được :
$\begin{cases} a=1\\b=-1\\c=0\end{cases}$
`to a+b+c=1+(-1)+0=0`