`2x^2 +y^2 -2xy -6x+9 =0`
`=> (x^2 -2xy +y^2) + (x^2 -6x+9) =0`
`=> (x-y)^2 + (x-3)^2 =0`
Vì `(x -y)^2 \ge 0 AA x , y`
`(x-3)^2 \ge 0 AA x`
`=> (x-y)^2 + (x-3)^2 \ge 0`
Dấu `=` xảy ra :
`<=>` $\begin{cases} x - y =0 \\ x -3 =0 \end{cases}$
`<=>` $\begin{cases} x = y \\ x =3 \end{cases}$
`<=> x = y =3`
Vậy `x = y =3`