Đáp án:
Giải thích các bước giải:
$(\frac{2}{x}+3)-(\frac{3}{x}-2)=(x+\frac{4}{x+3}(x-2))\\\Leftrightarrow (x+3)x((\frac{2}{x}+3)-(\frac{3}{x}-2)-(x+\frac{4}{x+3}(x-2)))=0\\\Leftrightarrow x^3+2x^2-22x+3=0\\\Leftrightarrow \left[\begin{array}{l}x=-\frac{2}{3}-\frac{35(1+i\sqrt{3})}{3\sqrt[3]{\frac{1}{2}(-493+3i\sqrt{125439})}}-\frac{1}{6}(1\pm i\sqrt{3})\sqrt[3]{\frac{1}{2}(-493+3i\sqrt{125439})}\\x=\frac{1}{3}(-2+\frac{70}{\sqrt[3]{\frac{1}{2}(-493+3i\sqrt{125439})}}+\sqrt[3]{\frac{1}{2}(-493+3i\sqrt{125439})})\end{array}\right.$