Bài 1. Cho a, b, c, d \(\in\) N*.
Chứng tỏ rằng: \(M=\dfrac{a}{a+b+c}+\dfrac{b}{a+b+d}+\dfrac{c}{b+c+d}+\dfrac{d}{a+c+d}\) có giá trị không là số nguyên.
Bài 2. Cho a, b \(\in\) N*. Chứng tỏ rằng:
a)\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
b)\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)