`A= 1/2.9 + 1/3.12 + 1/4.15 +...+1/2020.6063`
`1/3 A= 1/3( 1/2.9 + 1/3.12 + 1/4.15 +...+1/2020.6063)`
`1/3 A= 1/(3.2.9) + 1/(3.3.12) + 1/(3.4.15) + ...+1/(3.2020.6063)`
`1/3 A= 1/6.9 + 1/9.12 + 1/12.15 +....+ 1/6060.6063`
`3. 1/3 A= 3(1/6.9 + 1/9.12 + 1/12.15 +...+1/6060.6063)`
`A= 3/6.9 + 3/9.12 + 3/12.15 +...+3/6060.6063`
`A= 1/6- 1/9 + 1/9 - 1/12 + 1/12 -...+1/6060 - 1/6063`
`A= 1/6 - 1/6063 < 1/6`
Vậy `A <1/6`