Đáp án:
`P_{max}={7\sqrt{3}}/3` khi `A=B≈73°13'; C≈33°34'`
Giải thích các bước giải:
`P=2cosA+2cosB+2\sqrt{3}cosC`
`=2. 2 cos\ {A+B}/2.cos \ {A-B}/2 +2\sqrt{3} cosC`
`=4 cos\ {180-C}/2 cos \ {A-B}/2 +2\sqrt{3} cosC`
`=4 cos\ (90- C/2). cos \ {A-B}/2 +2\sqrt{3} cosC`
`=4sin\ C/ 2 cos \ {A-B}/2 +2\sqrt{3} cosC`
`=4sin\ C/ 2 cos \ {A-B}/2 +2\sqrt{3}. (1-2sin^2\ C/2)`
`=4sin\ C/ 2 cos \ {A-B}/2 -4\sqrt{3} sin^2\ C/2 +2\sqrt{3}`
`\le 4sin\ C/2-4\sqrt{3} sin^2\ C/2 +2\sqrt{3}`
(vì `cos\ {A-B}/2\le 1`)
`\le -4\sqrt{3}. (sin^2 \ C/2 - 2. sin\ C/2 1/{2\sqrt{3}} + 1/{12})+1/\sqrt{3}+2\sqrt{3}`
`\le -4\sqrt{3} (sin\ C/2-1/{2\sqrt{3}})^2+7/\sqrt{3}`
`\le 7/{\sqrt{3}}={7\sqrt{3}}/3`
Dấu "=" xảy ra khi:
`\qquad sin\ C/ 2 -1/{2\sqrt{3}}=0`
`<=>sin \ C/2=1/{2\sqrt{3}}`
`<=>C≈33°34'`
`\qquad A=B={180°-C}/2≈73°13'`
Vậy `P_{max}={7\sqrt{3}}/3` khi `A=B≈73°13'`
`C≈33°34'`