Đáp án:
`x\in{\dfrac{-13}{8};\dfrac{15}{8}`
Giải thích các bước giải:
`(1/8-x)^2-125%= 1 13/16`
`(1/8 - x)^2 - 5/4=29/16 `
`(1/8-x)^2 = 29/16 + 5/4 `
`( 1/8-x)^2=49/16`
\(\left[ \begin{array}{l}(\dfrac{1}{8} - x )^2 = \dfrac{7}{4}\\(\dfrac{1}{8}-x)^2=\dfrac{-7}{4}\end{array} \right.\)
\(\left[ \begin{array}{l}\dfrac{1}{8} - x = \dfrac{7}{4}\\\dfrac{1}{8}-x=\dfrac{-7}{4}\end{array} \right.\)
\(\left[ \begin{array}{l} x = \dfrac{1}{8} -\dfrac{7}{4}\\x=\dfrac{1}{8} -\dfrac{-7}{4}\end{array} \right.\)
\(\left[ \begin{array}{l} x = \dfrac{-13}{8} \\x=\dfrac{15}{8}\end{array} \right.\)
vậy `x\in{\dfrac{-13}{8};\dfrac{15}{8}`