Rút gọn:
\(\begin{array}{l}a)\,\,\,A = \left( {x - y} \right)\sqrt {\frac{3}{{y - x}}} \\b)\,\,B = 2\sqrt {3x} - \sqrt {48x} + \sqrt {108x} + \sqrt {3x} \,\,\,\,\,\left( {x \ge 0} \right)\\c)\,\,\,C = \frac{1}{{1 - 5x}}\sqrt {3{x^2}\left( {25{x^2} - 10x + 1} \right)} ,\,\,\,0 \le x \le \frac{1}{5}\\d)\,\,D = 2\sqrt {25xy} + \sqrt {225{x^3}{y^3}} - 3y\sqrt {16{x^3}y} \,\,\,\,\left( {x \ge 0,\,\,y \ge 0} \right).\end{array}\)
A.\(\begin{array}{l}a)\,\,A = - \sqrt {3\left( {y - x} \right)} \\b)\,\,\,B = 5\sqrt {3x} \\c)\,\,C = x\sqrt 3 \\d)\,\,\,D = \sqrt {xy} \left( {10 + 3xy} \right)\end{array}\)
B.\(\begin{array}{l}a)\,\,A = \sqrt {3\left( {y - x} \right)} \\b)\,\,\,B = 12\sqrt {3x} \\c)\,\,C = x\sqrt 3 \\d)\,\,\,D = \sqrt {xy} \left( {10 + 3xy} \right)\end{array}\)
C.\(\begin{array}{l}a)\,\,A = - \sqrt {3\left( {y - x} \right)} \\b)\,\,\,B = 12\sqrt {3x} \\c)\,\,C = x\sqrt 3 \\d)\,\,\,D = - \sqrt {xy} \left( {10 + 3xy} \right)\end{array}\)
D.\(\begin{array}{l}a)\,\,A = - \sqrt {3\left( {y - x} \right)} \\b)\,\,\,B = 5\sqrt {3x} \\c)\,\,C = -x\sqrt 3 \\d)\,\,\,D = \sqrt {xy} \left( {10 + 3xy} \right)\end{array}\)