c)Ta có: `ΔABC~ΔHBA`(cmt)
$⇔\dfrac{AB}{HB}=\dfrac{AC}{AH}=\dfrac{BC}{AB}$
$⇒BH=\dfrac{AB^2}{BC}=\dfrac{8^2}{10}=6,4(cm)$
Ta có: $KH//AC$(gt)
⇒`ΔKBH~ΔABC`
$⇔\dfrac{BK}{AB}=\dfrac{BH}{BC}=\dfrac{KH}{AC}$
$⇒HK=\dfrac{BH.AC}{BC}=\dfrac{6,4.6}{10}=3,84(cm)$
Xét `ΔABC` và `ΔHAC` có:
$\widehat{AHC}=\widehat{BAC}=90^{o}(gt)$
$\widehat{ACB}chung$
⇒`ΔABC` ~ `ΔHAC` (gg)
⇔$\dfrac{AB}{AH}=\dfrac{AC}{HC}=\dfrac{BC}{AC}$
$⇒HC=\dfrac{AC^2}{BC}=\dfrac{6^2}{10}=3,6(cm)$
Ta có: $KH//AC$(gt)
Áp dụng định lý Ta-lét có:
$\dfrac{AK}{AB} =\dfrac{HC}{BC}$
$⇒AK=\dfrac{AB.HC}{BC}=\dfrac{8.3,6}{10}=2,88(cm)$
Ta có: $KH//AC$(gt)
`⇒AKHC` là hình thang
Mà $\widehat{BAC}=90^{o}(gt)$
$⇒\widehat{AKH}=90^{o}$
`⇒`Hình thang `AKHC` là hình thang vuông
$⇒S_{AKHC}=\dfrac{1}{2}.(KH+AC).AK=\dfrac{1}{2}.(3,84+6).2,88=14,1696(cm^2)$