Đáp án: + Giải thích các bước giải:
`\sqrt{2x-1}+ \sqrt{4-3x} = \sqrt{x+3}`
Đk : `1/2 ≤ x ≤ 3/4`
`⇔ 2x - 1 + 4 - 3x + 2\sqrt{(2x-1)(4x-3)} = x + 3`
`⇔ 3 - x + 2\sqrt{(2x-1)(4x-3)} = x + 3`
`⇔ 2x = 2\sqrt{(2x-1)(4x-3)}`
`⇔ x = \sqrt{8x - 6x^2 - 4 + 3x}`
`⇔ x = \sqrt{-6x^2 + 11x - 4}`
`⇔ x^2 = -6x^2 + 11x - 4`
`⇔ 7x^2 - 11x - 4 = 0`
`⇔` \(\left[ \begin{array}{l}x=1\text{(thoả mãn)}\\x=\dfrac{4}{7}\text{(thoả mãn)}\end{array} \right.\)
Vậy `S = { 1 ; 4/7 }`