Đáp án:
a, xét tam giác AHB và tg AHC có : ^AHC = ^AHB = 90
AB = AC do tg ABC cân tại A (gt)
^ABC = ^ACB do tg ABC ...
=> tg AHB = tg AHC (ch-gn)
b, tg ABC cân tại A (Gt) mà có AH là đường cao (1)
=> AH đồng thời là đường trung tuyến
=> H là trung điểm của BC
=> BH = 1/2BC = 6 cm
tg AHB vuông tại H (gt) => AB^2 = AH^2 + HB^2 (ĐL pytago)
AB = 10 (gt)
=> AH = 8 do AH > 0
c, (1) => AH đồng thời là pg của ^BAC (đl)
=> ^CAH = ^BAH (đn)
có HE // AC (gt) ; ^CAH slt ^AHE => ^CAH = ^AHE (đl)
=> ^BAH = ^AHE
=> tg AHE cân tại E (dh)
Giải thích các bước giải: