Giải thích các bước giải:
Đặt `A = 3/(1.2.3) + 5/(2.3.4) + 7/(3.4.5) +...+ 2017/(1008.1009.1010)`
`=> A = (2/(1.2.3) + 1/(1.2.3)) + (4/(2.3.4) + 1/(2.3.4)) + (6/(3.4.5) + 1/(3.4.5)) + ... + (2016/(1008.1009.1010) + 1/(1008.1009.1010))`
`=> A = (2/(1.2.3) + 4/(2.3.4) +6/(3.4.5) +....+ 2016/(1008.1009.1010))+(1/(1.2.3) + 1/(2.3.4)+ 1/(3.4.5)+...+1/(1008.1009.1010))`
`=> A = ((1.2)/(1.2.3)+ (2.2)/(2.3.4) +(2.3)/(3.4.5) +....+ (1008.2)/(1008.1009.1010)) + 1/2.(2/(1.2.3) + 2/(2.3.4)+ 2/(3.4.5)+...+2/(1008.1009.1010))`
`=> A = ( 2/2.3 + 2/3.4 + 2/4.5 + ... + 2/1009.10010) + 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/1008.1009 - 1/1009.1010)`
`=> A = 2.(1/2.3 + 1/3.4 + 1/4.5 + ... + 1/1009.1010)+ 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/1008.1009 - 1/1009.1010)`
`=> A = 2.(1/2-1/3+1/3-1/4+1/4-1/5+...+1/1009-1/1010) + 1/2.(1/1.2 - 1/1009.1010)`
`=> A = 2.(1/2-1/1010) + 1/2.(1/2-1/1009.1010)`
Vì `2.(1/2-1/1010) = 2 . 1/2 - 2 . 1/1010 < 2 . 1/2`
`1/2.(1/2-1/1009.1010) = 1/2 . 1/2 - 1/2 . 1/1009.1010 < 1/2 . 1/2`
`=> A < 2 . 1/2 + 1/2 . 1/2`
`=> A < 1+1/4 = 5/4`
`=> A < 5/4(đpcm)`