a) $N = \dfrac{\sqrt x}{\sqrt x + 2} + \dfrac{4 \sqrt x}{x -4} (Đk: x \geq 0; x \neq 4)$
$= \dfrac{\sqrt x}{\sqrt x + 2} + \dfrac{4\sqrt x}{(\sqrt x + 2)(\sqrt x - 2)}$
$ = \dfrac{\sqrt x(\sqrt x -2) + 4\sqrt x}{(\sqrt x + 2)(\sqrt x - 2)}$
$=\dfrac{x - 2 \sqrt x + 4\sqrt x}{(\sqrt x + 2)(\sqrt x - 2)}$
$=\dfrac{x + 2 \sqrt x}{(\sqrt x + 2)(\sqrt x - 2)}$
$=\dfrac{\sqrt x(\sqrt x + 2)}{(\sqrt x + 2)(\sqrt x - 2)}$
$=\dfrac{\sqrt x}{\sqrt x -2 }$
b) Khi $N = 2$ thì $\dfrac{\sqrt x }{\sqrt x - 2} = 2$
⇔ $\sqrt x = 2(\sqrt x - 2)$
⇔ $\sqrt x = 2\sqrt x - 4$
⇔ $\sqrt x = 4$
⇒ $x = 16 (T/m)$