`H=x+\sqrt{x-2}`
`H=x-2+2.\sqrt{x-2}. 1/2 +1/4+7/4`
`H=(\sqrt{x-2}+1/2)^2+7/4`
Do `\sqrt{x-2}>=0` với `AAx>=2`
`=> \sqrt{x-2}+1/2>=1/2`
`=> (\sqrt{x-2}+1/2)^2>=1/4`
`=> (\sqrt{x-2}+1/2)^2+7/4>=2`
`=> H_(min)=2`
Dấu = xảy ra khi `\sqrt{x-2}=0`
`<=> x-2=0`
`<=> x=2`
Vậy `H_(min)=2<=>x=2`