Đáp án:
$m^2-2n^2-1=0$
$⇔ m^2-1=2n^2$
$⇔ (m-1)(m+1)=2n^2$
TH1: $\begin{cases}m-1=1\\m+1=2n^2\end{cases}⇒\begin{cases}m=2\\n=±\sqrt{\dfrac{3}{2}}\end{cases}$ (loại)
TH2: $\begin{cases}m-1=n\\m+1=2n\end{cases}⇒\begin{cases}n=2\\m=3\end{cases}$ (nhận)
TH3: $\begin{cases}m-1=2\\m+1=n^2\end{cases}⇒\begin{cases}n=±2\ (\text{loại -2 chọn 2})\\m=3\end{cases}$ (nhận)
Vậy $(m;n)=(3;2)$