`|x - 2019|^2020 + |x - 2020|^2021 = 1`
`<=> |x - 2019|^2020 = 1 - |x - 2020|^2021`
Vì `|x - 2019|^2020 >= 0 AA x`
`<=> 1 - |x - 2020|^2021 >= 0 AA x`
`<=> - |x - 2020|^2021 >= -1 AA x`
`<=> |x - 2020|^2021 <= 1 AA x`
mà `|x - 2020|^2021 >= 0 forall x`
`<=> 0 <= |x - 2020|^2021 <= 1`
`<=> |x - 2020|^2021 in {0; 1}`
`-)` Nếu `|x - 2020|^2021 = 0`
`<=> |x - 2020| = 0`
`<=> x - 2020 = 0`
`<=> x = 2020`
Thay `x = 2020` vào phương trình `|x - 2019|^2020 + |x - 2020|^2021 = 1`, ta có:
`|2020 - 2019|^2020 + |2020 - 2020|^2021 = 1`
`<=> |1|^2020 + |0|^2021 = 1`
`<=> 1 + 0 = 1`(luôn đúng)
`<=> x = 2020`(chọn)
`-)` Nếu `|x - 2020|^2021 = 1`
`<=> |x - 2020| = 1`
`<=>` \(\left[ \begin{array}{l}x- 2020=1\\x- 2020 = -1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = 2021\\x = 2019\end{array} \right.\)
`+)` Thay `x = 2021` vào phương trình `|x - 2019|^2020 + |x - 2020|^2021 = 1`, ta có:
`|2021 - 2019|^2020 + |2021 - 2020|^2021 = 1`
`<=> |2|^2020 + |1|^2021 = 1`
`<=> 2^2020 + 1 = 1`(Vô lí)
`<=> x = 2021`(Loại)
`+)` Thay `x = 2019` vào phương trình `|x - 2019|^2020 + |x - 2020|^2021 = 1`, ta có:
`|2019 - 2019|^2020 + |2019 - 2020|^2021 = 1`
`<=> |0|^2020 + |-1|^2021 = 1`
`<=> 0 + 1 = 1`(Luôn đúng)
`<=> x = 2019`(Chọn)
Vậy `x in {2019; 2021}`