Đáp án:
Giải thích các bước giải:
a) `x-1=(\sqrt{x})^2-(1)^2=(\sqrt{x}-1)(\sqrt{x}+1)`
b) `x-2=(\sqrt{x})^2-(\sqrt{2})^2=(\sqrt{x}-\sqrt{2})(\sqrt{x}+\sqrt{2})`
c) `x-3=(\sqrt{x})^2-(\sqrt{3})^2=(\sqrt{x}-\sqrt{3})(\sqrt{x}+\sqrt{3})`
d) `x-4=(\sqrt{x})^2-(2)^2=(\sqrt{x}-2)(\sqrt{x}+2)`
e) `x-5=(\sqrt{x})^2-(\sqrt{5})^2=(\sqrt{x}-\sqrt{5})(\sqrt{x}+\sqrt{5})`
f) `x-9=(\sqrt{x})^2-(3)^2=(\sqrt{x}-3)(\sqrt{x}+3)`
g) `x-16=(\sqrt{x})^2-(4)^2=(\sqrt{x}-4)(\sqrt{x}+4)`
h) `x\sqrt{x}-1=\sqrt{x^3}-(1)^3=(\sqrt{x}-1)(x+\sqrt{x}+1)`
k) `x\sqrt{x}+1=\sqrt{x^3}+(1)^3=(\sqrt{x}+1)(x-\sqrt{x}+1)`
l) `x\sqrt{x}-8=\sqrt{x^3}-(2)^3=(\sqrt{x}-2)(x+2\sqrt{x}+4)`
n) `x\sqrt{x}+27=\sqrt{x^3}+(3)^3=(\sqrt{x}+3)(x+3\sqrt{x}+9)`
p) `x\sqrt{x}-27=\sqrt{x^3}-(3)^3=(\sqrt{x}-3)(x-3\sqrt{x}+9)`
q) `x\sqrt{x}+8=\sqrt{x^3}+(2)^3=(\sqrt{x}+2)(x-2\sqrt{x}+4)`