Đáp án + Giải thích các bước giải:
`a,x^3+x=0`
`=> x(x^2+1)=0`
\(⇒\left[ \begin{array}{l}x=0\\x^2+1=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=0\quad(Tm)\\x^2=-1\quad(Ktm)\end{array} \right.\)
Vậy `S={0}`
`b,2x(x-9)+3(x-9)=0`
`=> (x-9)(2x+3)=0`
\(⇒\left[ \begin{array}{l}x-9=0\\2x+3=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=9\\2x=-3\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=9\\x=-\dfrac{3}2\end{array} \right.\)
Vậy `S={9;-3/2}`
`c,6x^2-3x=0`
`=>3x(2x-1)=0`
\(⇒\left[ \begin{array}{l}3x=0\\2x-1=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=0\\2x=1\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=0\\x=\dfrac{1}2\end{array} \right.\)
Vậy `S={0;1/2}`
`d,5x^3(7x+1)-10x^2(7x+1)=0`
`=>(7x+1)(5x^3-10x^2)=0`
`=>(7x+1)(x-2)5x^2=0`
\(⇒\left[ \begin{array}{l}7x+1=0\\x-2=0\\5x^2=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}7x=-1\\x=2\\x^2=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=-\dfrac{1}7\\x=2\\x=0\end{array} \right.\)
Vậy `S={-1/7;2;0}`