`\sqrt{x-3}-2\sqrt{x^2-9}=0` ĐK: `x>=3`
`<=> \sqrt{x-3}-2\sqrt{x-3}.\sqrt{x+3}=0`
`<=> \sqrt{x-3}(1-2\sqrt{x+3})=0`
`<=>`\(\left[ \begin{array}{l}\sqrt{x-3}=0\\1-2\sqrt{x+3}=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x-3=0\\\sqrt{x+3}=\dfrac{1}{2}\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=3\\x+3=\dfrac{1}{4}\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=3(tm)\\x=\dfrac{-11}{4} (ktm)\end{array} \right.\)
Vậy `S={3}`