Đáp án:
$\begin{array}{l}
a)\dfrac{2}{{\sqrt {10} - 3}} + \dfrac{2}{{\sqrt {10} + 3}}\\
= \dfrac{{2\left( {\sqrt {10} + 3} \right) + 2\left( {\sqrt {10} - 3} \right)}}{{\left( {\sqrt {10} - 3} \right)\left( {\sqrt {10} + 3} \right)}}\\
= \dfrac{{4\sqrt {10} }}{{10 - 9}}\\
= 4\sqrt {10} \\
b)\dfrac{{\sqrt 3 \left( {\sqrt 3 - 2} \right)}}{{\sqrt 3 }} - \dfrac{{2\left( {\sqrt 3 + 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}\\
= \sqrt 3 - 2 - \dfrac{{2\left( {\sqrt 3 + 1} \right)}}{{3 - 1}}\\
= \sqrt 3 - 2 - \left( {\sqrt 3 + 1} \right)\\
= - 3\\
c)\dfrac{3}{{\sqrt 5 - 2}} + \dfrac{3}{{\sqrt 5 + 2}} - \dfrac{{5 - \sqrt 5 }}{{\sqrt 5 - 1}}\\
= \dfrac{{3\left( {\sqrt 5 + 2} \right) + 3\left( {\sqrt 5 - 2} \right)}}{{\left( {\sqrt 5 - 2} \right)\left( {\sqrt 5 + 2} \right)}} - \dfrac{{\sqrt 5 \left( {\sqrt 5 - 1} \right)}}{{\sqrt 5 - 1}}\\
= \dfrac{{6\sqrt 5 }}{{5 - 4}} - \sqrt 5 \\
= 5\sqrt 5 \\
d)\dfrac{4}{{\sqrt 3 - 1}} - 2\sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} \\
= \dfrac{{4\left( {\sqrt 3 + 1} \right)}}{{3 - 1}} - 2\left( {\sqrt 3 - 1} \right)\\
= 2\left( {\sqrt 3 + 1} \right) - 2\left( {\sqrt 3 - 1} \right)\\
= 4\\
e)5\sqrt {\dfrac{1}{5}} - \dfrac{8}{{1 + \sqrt 5 }} + \dfrac{{\sqrt {20} - 5}}{{2 - \sqrt 5 }}\\
= \sqrt 5 - \dfrac{{8\left( {\sqrt 5 - 1} \right)}}{{5 - 1}} + \dfrac{{\sqrt 5 \left( {2 - \sqrt 5 } \right)}}{{2 - \sqrt 5 }}\\
= \sqrt 5 - 2\left( {\sqrt 5 - 1} \right) + \sqrt 5 \\
= 2\\
f)\dfrac{7}{{\sqrt {10} - \sqrt 3 }} - \dfrac{{5\sqrt 2 - 2\sqrt 5 }}{{\sqrt 5 - \sqrt 2 }} - \dfrac{6}{{\sqrt 3 }}\\
= \dfrac{{7\left( {\sqrt {10} + \sqrt 3 } \right)}}{{10 - 3}} - \dfrac{{\sqrt {10} \left( {\sqrt 5 - \sqrt 2 } \right)}}{{\sqrt 5 - \sqrt 2 }} - 2\sqrt 3 \\
= \sqrt {10} + \sqrt 3 - \sqrt {10} - 2\sqrt 3 \\
= - \sqrt 3 \\
g)\dfrac{{3 + \sqrt 3 }}{{\sqrt 3 }} - \dfrac{2}{{\sqrt 3 - 1}}\\
= \dfrac{{\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{\sqrt 3 }} - \dfrac{{2\left( {\sqrt 3 + 1} \right)}}{{3 - 1}}\\
= \sqrt 3 + 1 - \sqrt 3 - 1\\
= 0\\
h)\dfrac{{\sqrt {15} - \sqrt 5 }}{{\sqrt 3 - 1}} + \sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} - 2\sqrt 5 \\
= \dfrac{{\sqrt 5 \left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 - 1}} + \sqrt 5 - 2 - 2\sqrt 5 \\
= \sqrt 5 + \sqrt 5 - 2 - 2\sqrt 5 \\
= - 2\\
i)\sqrt {\dfrac{{\sqrt 5 }}{{8\sqrt 5 + 3\sqrt 5 }}} .\left( {3\sqrt 2 + \sqrt {14} } \right)\\
= \sqrt {\dfrac{1}{{11}}} .\sqrt 2 .\left( {3 + \sqrt 7 } \right)\\
= \dfrac{{\sqrt {22} .\left( {3 + \sqrt 7 } \right)}}{{11}}\\
= \dfrac{{3\sqrt {22} + \sqrt {154} }}{{11}}
\end{array}$