Đáp án:
$\\$
`(x + 1/5) + (x+1/6) + (x+1/10) + (x+1/15) + (x+1/21) + (x+1/28) + (x + 1/36) = 8 7/9`
`↔ (x + 1/5) + (x+1/6) + (x+1/10) + (x+1/15) + (x+1/21) + (x+1/28) + (x + 1/36) =79/9`
`↔ x + 1/5 + x + 1/6 + x + 1/10 + x + 1/15 + x + 1/21 + x + 1/28 + x + 1/36 = 79/9`
`↔ (x + x + x + x + x + x + x) + (1/5 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 1/36) = 79/9`
`↔ 7x + [(1/5 + 1/10 + 1/15 + 1/6) + (1/21 + 1/28 + 1/36)] = 79/9`
`↔ 7x + [(6/30 + 3/30 + 2/30 + 5/30) + (12/252 + 9/252 + 7/252)] = 79/9`
`↔ 7x + [8/15 + 1/9] = 79/9`
`↔ 7x = 79/9 - [8/15 + 1/9]`
`↔ 7x = 79/9 - 8/15 - 1/9`
`↔ 7x = (79/9 - 1/9) - 8/15`
`↔ 7x = 78/9 - 8/15`
`↔ 7x = 390/45 - 24/45`
`↔ 7x = 122/15`
`↔x=122/15÷7`
`↔x=122/15×1/7`
`↔x=122/105`
Vậy `x=122/105`