Đáp án:
$\\$
`a,`
`2 (x-3)^2 = 7x^2 - 63`
`↔ 2 (x^2 - 6x + 9) - 7x^2 + 63=0`
`↔ 2x^2 - 12x + 18 - 7x^2 + 63=0`
`↔ (2x^2 - 7x^2) - 12x + (18 + 63)=0`
`↔ -5x^2 - 12x + 81 =0`
`↔ -5 [x^2 + 12/5x - 81/5] = 0`
`↔ -5 [ (x^2 - 3x) + (27/5x - 81/5)]=0`
`↔ -5 [x (x-3) + 27/5 (x-3)]=0`
`↔ -5 [(x-3) (x+27/5)]=0`
`↔ (x-3) (x+27/5)=0`
`↔` \(\left[ \begin{array}{l}x-3=0\\x+\dfrac{27}{5}=0\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=0+3\\x=0-\dfrac{27}{5}\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=3\\x=\dfrac{-27}{5}\end{array} \right.\)
Vậy `S ∈ {3; (-27)/5}`
$\\$
`b,`
`3x^3 + 2x^2 + 2x + 3 = 0`
`↔ (3x^3 + 3) + (2x^2+2x)=0`
`↔ 3 (x^3 + 1) + 2x (x + 1) = 0`
`↔ 3 (x^3 + 1^3) + 2x (x+1)=0`
`↔ 3 (x + 1) (x^2 - x +1) + 2x (x+1)=0`
`↔ (x+1) [3 (x^2-x+1) + 2x]=0`
Trường hợp 1 :
`↔x+1=0`
`↔x=0-1`
`↔x=-1`
Trường hợp 2 :
`↔3 (x^2 - x+1) + 2x=0`
`↔ 3x^2 - 3x + 3 + 2x=0`
`↔ 3x^2 + (-3x+2x) + 3=0`
`↔3x^2 - x + 3 = 0`
`↔ 3 [x^2 - 1/3x + 1] = 0`
`↔ 3 [x^2 - 2 . 1/6x + 1/36 + 35/36] =0`
`↔ 3 [x^2 - 2 . 1/6 + (1/6)^2 + 35/36]=0`
`↔ 3 (x - 1/6)^2 + 35/12=0`
Với mọi `x` có : `(x-1/6)^2` $\geqslant 0$
`↔ 3 (x-1/6)^2` $\geqslant 0 ∀x$
`↔ 3 (x-1/6)^2 + 35/12` $\geqslant$ `35/12 \ne 0`
`->` Đa thức vô nghiệm
Vậy `S ∈ {-1}`