Đáp án: `(a;b;c;d)=(1;2;3;4)`
Giải thích các bước giải:
$\dfrac{30}{43}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}$
Ta có:
$\dfrac{30}{43}=\dfrac{1}{\dfrac{43}{30}}=\dfrac{1}{1+\dfrac{13}{30}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{4}{13}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}}$
`=>` `(a;b;c;d)=(1;2;3;4)`
Vậy `(a;b;c;d)=(1;2;3;4)`