Đáp án:
Giải thích các bước giải:
B đối xứng với A qua Ox nên Ox là đường trung trực của AB => OA = OB
C đối xứng với A qua Oy nên OY là đường trung trực của AC => OA = OC
Suy ra OB = OC (1)
∆AOB cân tại O =>ˆO1O1^ = ˆO2O2^ = ˆAOB2AOB2^
∆AOC cân tại O =>ˆO3O3^ = ˆO4O4^ = ˆAOC2AOC2^ˆAOBAOB^ˆAOCAOC^
Mà góc AOB + ˆAOCAOC^ = 2(ˆO2O2^ + ˆO3O3^) = 2.900 = 1800
=> B, O, C thẳng hàng (2)
Từ (1) và (2) suy ra B đối xứng với C qua O.
Cách 2:
A đối xứng với B qua Ox và O nằm trên Ox nên OA đối xứng với OB qua OX suy ra
OA = OB.
A đối xứng với C qua Oy và O nằm trren Oy nên OA đối xứng với OC qua Oy.
Suy ra OA = OC
Do đó OB = OC (1)
và ˆAOBAOB^ + ˆAOCAOC^ = 2(ˆO2O2^ + ˆO3O3^) = 2.900 = 1800
=>B, O, C thẳng hàng (2)
Từ (1) và (2) suy ra B đối xứng với C qua O.