Đáp án:
\(\begin{array}{l}
B2:\\
a)\sqrt 7 - 1\\
b)2\\
c)2\sqrt 3 - 1\\
d) - 4 - 2\sqrt 6 \\
e)1\\
f)8 - 2\sqrt {15} \\
B3:\\
A = \dfrac{{2{x^2} - 10x}}{{4 - x}}\\
B = 1
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
B2:\\
a)\sqrt {7 - 2\sqrt 7 .1 + 1} = \sqrt {{{\left( {\sqrt 7 - 1} \right)}^2}} \\
= \sqrt 7 - 1\\
b)2 - \sqrt 3 - 2\sqrt {\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)} + 2 + \sqrt 3 \\
= 4 - 2\sqrt {4 - 3} \\
= 4 - 2 = 2\\
c){\left( {1 + \sqrt 3 } \right)^2} - {\sqrt 5 ^2}\\
= 4 + 2\sqrt 3 - 5\\
= 2\sqrt 3 - 1\\
d)1 - {\left( {\sqrt 2 + \sqrt 3 } \right)^2}\\
= 1 - \left( {5 + 2\sqrt 6 } \right)\\
= 1 - 5 - 2\sqrt 6 = - 4 - 2\sqrt 6 \\
e)\dfrac{{\sqrt {2 + \sqrt 3 } - \sqrt {2 - \sqrt 3 } }}{{\sqrt 2 }}\\
= \dfrac{{\sqrt {4 + 2\sqrt 3 } - \sqrt {4 - 2\sqrt 3 } }}{2}\\
= \dfrac{{\sqrt {3 + 2\sqrt 3 .1 + 1} - \sqrt {3 - 2\sqrt 3 .1 + 1} }}{2}\\
= \dfrac{{\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} - \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} }}{2}\\
= \dfrac{{\sqrt 3 + 1 - \sqrt 3 + 1}}{2} = 1\\
f)\sqrt 2 \left( {\sqrt 5 - \sqrt 3 } \right)\sqrt {4 - \sqrt {15} } \\
= \left( {\sqrt 5 - \sqrt 3 } \right)\sqrt {8 - 2\sqrt {15} } \\
= \left( {\sqrt 5 - \sqrt 3 } \right)\sqrt {5 - 2\sqrt 5 .\sqrt 3 + 3} \\
= \left( {\sqrt 5 - \sqrt 3 } \right)\sqrt {{{\left( {\sqrt 5 - \sqrt 3 } \right)}^2}} \\
= {\left( {\sqrt 5 - \sqrt 3 } \right)^2}\\
= 8 - 2\sqrt {15} \\
B3:\\
a)A = \dfrac{{{{\left( {x - 5} \right)}^2}}}{{\left| {4 - x} \right|}} - \dfrac{{{x^2} - 25}}{{x - 4}}\\
= \dfrac{{{x^2} - 10x + 25}}{{4 - x}} + \dfrac{{{x^2} - 25}}{{4 - x}}\\
= \dfrac{{2{x^2} - 10x}}{{4 - x}}\\
B = \sqrt {x - 3 + 2\sqrt {x - 3} .1 + 1} - \sqrt {x - 3} \\
= \sqrt {{{\left( {\sqrt {x - 3} + 1} \right)}^2}} - \sqrt {x - 3} \\
= \sqrt {x - 3} + 1 - \sqrt {x - 3} = 1
\end{array}\)