Đáp án:
Bạn tham khảo đáp án bên dưới nhé!
Giải thích các bước giải:
$\rm\#Bolivianos$
`text(A)=1+2+2^2+2^3+...+2^1982`
`=>text(2A)=2.(1+2+2^2+2^3+...+2^1982)`
`=>text(2A)=2+2^2+2^3+2^4+...+2^1983`
`=>text(2A)-text(A)=(2+2^2+2^3+2^4+...+2^1983)-(1+2+2^2+2^3+...+2^1982)`
`=>text(A)=2^1983-1`
Vậy `text(A)=2^1983-1`.
`text(B)=7+7^2+7^3+...+7^100`
`=>text(7B)=7.(7+7^2+7^3+...+7^100)`
`=>text(7B)=7^2+7^3+7^4+...+7^101`
`=>text(7B)-text(B)=(7^2+7^3+7^4+...+7^101)-(7+7^2+7^3+...+7^100)`
`=>text(6B)=7^101-7`
`=>text(B)=(7^101-7)/6`
Vậy `text(B)=(7^101-7)/6`.
`text(C)=1/2+1/2^2+1/2^3+...+1/2^100`
`=>text(2C)=2.(1/2+1/2^2+1/2^3+...+1/2^100)`
`=>text(2C)=1+1/2+1/2^2+...+1/2^99`
`=>text(2C)-text(C)=(1+1/2+1/2^2+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)`
`=>text(C)=1-1/2^100`
Vậy `text(C)=1-1/2^100`.