`x^2+10x+26+y^2+2y`
`=x^2+10x+25+y^2+2y+1`
`=(x^2+10x+25)+(y^2+2y+1)`
`=(x+5)^2+(y+1)^2`
Ta có:
`(x+5)\ge0 AAx`
`(y+1)\ge0 AAy`
`\to (x+5)^2+(y+1)^2\ge0AAx;y` (đpcm)
$\\$
`x^2-8x+19`
`=x^2-8x+16+3`
`=(x^2-8x+16)+3`
`=(x^2-2.x.4+4^2)+3`
`=(x-4)^2+3`
Ta có:
`(x-4)^2\ge0 AAx`
`\to (x-4)^2+3\ge3 AAx` (đpcm)