`a) x(x - 3) - 2x + 6 = 0`
`⇔x ( x - 3) - 2 ( x - 3) = 0`
`⇔(x - 3)(x - 2) = 0`
⇔ \(\left[ \begin{array}{l}x - 3 = 0\\x - 2 = 0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x = 3\\x = 2\end{array} \right.\)
`b)x - 2√3 x^2 + 3x^3 = 0`
`⇔x ( 1- 2√3 x + 3x^2) = 0`
`⇔ x [1^2 - 2 . 1 . √3 x + (√3 x)^2] = 0`
`⇔ x ( 1- √3 x)^2 = 0`
⇔ \(\left[ \begin{array}{l}x = 0\\1- √3 x= 0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x = 0\\x =\dfrac{ 1}{√3}\end{array} \right.\)
`c)(x - 1)(x^2 + x + 1) = x^2 (x - 9) + 2x^2 + 6`
`⇔x^3 - 1 = x^3 - 9x^2 + 2x^2 + 6`
`⇔x^3 - 1 - x^3 + 9x^2 - 2x^2 - 6 = 0`
`⇔7x^2 - 7 = 0`
`⇔7(x^2 - 1)=0`
`⇔7(x - 1)(x + 1) = 0`
⇔ \(\left[ \begin{array}{l}x - 1 = 0\\x + 1 = 0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)
`2`
`4a^2b^2 + 4ab + 1`
`=(2ab)^2 + 2 .2ab . 1 + 1^2`
`=(2ab + 1)^2`
`(2ab + 1)^2 ≥ 0 ∀ x ∈ R`
`⇒4a^2b^2 + 4ab + 1 ≥ 0 ∀ x ∈ R`
`⇒4a^2b^2 + 4ab + 1` không âm