Đáp án:
$\begin{array}{l}
a)\left( {1 + \dfrac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \dfrac{{a - \sqrt a }}{{\sqrt a - 1}}} \right)\\
= \left( {1 + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a + 1}}} \right).\left( {1 - \dfrac{{\sqrt a \left( {\sqrt a - 1} \right)}}{{\sqrt a - 1}}} \right)\\
= \left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right)\\
= 1 - a\\
b)\left( {\dfrac{{1 - a\sqrt a }}{{1 - \sqrt a }} + \sqrt a } \right){\left( {\dfrac{{1 - \sqrt a }}{{1 - a}}} \right)^2}\\
= \left( {\dfrac{{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a + a} \right)}}{{1 - \sqrt a }} + \sqrt a } \right).{\left( {\dfrac{1}{{1 + \sqrt a }}} \right)^2}\\
= \left( {1 + \sqrt a + a + \sqrt a } \right)\dfrac{1}{{{{\left( {1 + \sqrt a } \right)}^2}}}\\
= \left( {a + 2\sqrt a + 1} \right).\dfrac{1}{{a + 2\sqrt a + 1}}\\
= 1\\
c)\left( {\dfrac{1}{{a + \sqrt a }} + \dfrac{1}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a + 1}}{{a - 2\sqrt a + 1}}\\
= \dfrac{{\sqrt a - 1 + \sqrt a + 1}}{{\sqrt a \left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}.\dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a + 1}}\\
= \dfrac{{2\sqrt a }}{{\sqrt a \left( {\sqrt a + 1} \right)}}.\dfrac{{\sqrt a - 1}}{{\sqrt a + 1}}\\
= \dfrac{{2\left( {\sqrt a - 1} \right)}}{{{{\left( {\sqrt a + 1} \right)}^2}}}\\
d)\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}\\
= \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}\\
= \sqrt a + \sqrt b - \left( {\sqrt a - \sqrt b } \right)\\
= 2\sqrt b \\
e)\dfrac{{x + \sqrt {xy} }}{{\sqrt x + \sqrt y }} - \dfrac{{x - y}}{{\sqrt x - \sqrt y }}\\
= \dfrac{{\sqrt x \left( {\sqrt x + \sqrt y } \right)}}{{\sqrt x + \sqrt y }} - \dfrac{{\left( {\sqrt x - \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right)}}{{\sqrt x - \sqrt y }}\\
= \sqrt x - \left( {\sqrt x + \sqrt y } \right)\\
= - \sqrt y \\
g)\dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\
= \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\
= \sqrt a - 1 + \sqrt a + 1\\
= 2\sqrt a \\
B2)\\
a)\sqrt {6 - 2\sqrt 5 } - \sqrt {{{\left( {1 - 3\sqrt 5 } \right)}^2}} \\
= \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} - \left( {3\sqrt 5 - 1} \right)\\
= \sqrt 5 - 1 - 3\sqrt 5 + 1\\
= - 2\sqrt 5 \\
b)\left( {\sqrt {10} + \dfrac{{5 - 2\sqrt 5 }}{{2 - \sqrt 5 }}} \right)\left( {\dfrac{{10 - \sqrt {10} }}{{\sqrt {10} - 1}} + \sqrt 5 } \right)\\
= \left( {\sqrt {10} - \sqrt 5 } \right)\left( {\sqrt {10} + \sqrt 5 } \right)\\
= 10 - 5\\
= 5
\end{array}$