`a) ( - 3 )/7 + x = ( - 1 )/2 : 7`
`⇔ ( - 3 )/7 + x = ( - 1 )/14`
`⇔ x = ( - 1 )/14 - ( - 3 )/7`
`⇔ x = 5/14`
Vậy `, x = 5/14 .`
`b) 3x - ( 1/6 - 1/2 x ) = - 1 2/3`
`⇔ 3x - 1/6 + 1/2 x = ( - 5 )/3`
`⇔ x . ( 3 - 1/2 ) = ( - 5 )/3 + 1/6`
`⇔ x . 5/2 = ( - 3 )/2`
`⇔ x = ( - 3 )/2 : 5/2`
`⇔ x = ( - 3 )/5`
Vậy `, x = ( - 3 )/5 .`
`c) 2 4/5 . x - 0,2 : 4/5 = 7/8`
`⇔ 14/5 . x - 1/4 = 7/8`
`⇔ 14/5 . x = 7/8 + 1/4`
`⇔ 14/5 . x = 9/8`
`⇔ x = 9/8 : 14/5`
`⇔ x = 45/112`
Vậy `, x = 45/112 .`
`d) 1/4 + 1/3 : | 2x - 1 | = 11/12`
`⇔ 1/3 : | 2x - 1 | = 11/12 - 1/4`
`⇔ 1/3 : | 2x - 1 | = 2/3`
`⇔ | 2x - 1 | = 1/3 : 2/3`
`⇔ | 2x - 1 | = 1/2`
`⇔` $\left[\begin{matrix}2x - 1 = \frac{1}{2}\\2x - 1 = \frac{- 1}{2}\end{matrix}\right.$
`⇔` $\left[\begin{matrix}2x = \frac{3}{2}\\2x = \frac{1}{2}\end{matrix}\right.$
`⇔` $\left[\begin{matrix}x = \frac{3}{4}\\x = \frac{1}{4}\end{matrix}\right.$
Vậy `, x ∈ { 3/4 ; 1/4 } .`
`e) 3/5 - ( 2 1/5 - x )^2 = 6/25`
`⇔ ( 11/5 - x )^2 = 3/5 - 6/25`
`⇔ ( 11/5 - x )^2 = 9/25`
`⇔` $\left[\begin{matrix}( \frac{11}{5} - x )^2 = ( \frac{3}{5} )^2\\( \frac{11}{5} - x )^2 = ( \frac{- 3}{5} )^2\end{matrix}\right.$
`⇔` $\left[\begin{matrix}\frac{11}{5} - x = \frac{3}{5}\\\frac{11}{5} - x = \frac{- 3}{5}\end{matrix}\right.$
`⇔` $\left[\begin{matrix}x = \frac{8}{5}\\x = \frac{14}{5}\end{matrix}\right.$
Vậy `, x ∈ { 8/5 ; 14/5 } .`