Đáp án:
1. `S={5}`
2. `S={3}`
3. `S={2}`
Giải thích các bước giải:
1. `\sqrt{x-1}=2` (Điều kiện: `x ≥1`)
`↔x-1=4`
`↔x=5`
Vậy: `S={5}`
2. `\frac{1}{2}.\sqrt{16x-32}-\frac{1}{3}.\sqrt{9x-18}+\sqrt{25x-50}=6`
`↔2\sqrt{x-2}-\sqrt{x-2}+5\sqrt{x-2}=6` (Điều kiện: `x ≥ 2`)
`↔6\sqrt{x-2}=6`
`↔\sqrt{x-2}=1`
`↔x-2=1`
`↔x=3` (thỏa mãn điều kiện)
Vậy: `S={3}`
3. `\sqrt{3-x}=2x-3` (Điều kiện: `x ≥ \frac{3}{2}`)
`↔3-x=4x^2-12x+9`
`↔4x^2-11x+6=0`
`↔4x^2-3x-8x+6=0`
`↔x(4x-3)-2(4x-3)=0`
`↔(4x-3)(x-2)=0`
`↔`\(\left[ \begin{array}{l}4x-3=0\\x-2=0\end{array} \right.\)
`↔`\(\left[ \begin{array}{l}x=\dfrac{3}{4} (\text{không thỏa mãn điều kiện})\\x=2 (\text{thỏa mãn điều kiện})\end{array} \right.\)
Vậy: `S={2}`