Đáp án:
$\begin{array}{l}
a)Dkxd:\left\{ \begin{array}{l}
a \ge 0\\
a\# 4
\end{array} \right.\\
H = \dfrac{{\sqrt a + 2}}{{\sqrt a + 3}} - \dfrac{5}{{a + \sqrt a - 6}} + \dfrac{1}{{2 - \sqrt a }}\\
= \dfrac{{\sqrt a + 2}}{{\sqrt a + 3}} - \dfrac{5}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}} - \dfrac{1}{{\sqrt a - 2}}\\
= \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right) - 5 - \left( {\sqrt a + 3} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\\
= \dfrac{{a - 4 - 5 - \sqrt a - 3}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\\
= \dfrac{{a - \sqrt a - 12}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\\
= \dfrac{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 4} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 2} \right)}}\\
= \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}}\\
b)H < 2\\
\Leftrightarrow \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}} - 2 < 0\\
\Leftrightarrow \dfrac{{\sqrt a - 4 - 2\sqrt a + 4}}{{\sqrt a - 2}} < 0\\
\Leftrightarrow \dfrac{{ - \sqrt a }}{{\sqrt a - 2}} < 0\\
\Leftrightarrow \sqrt a - 2 > 0\left( {do: - \sqrt a < 0} \right)\\
\Leftrightarrow \sqrt a > 2\\
\Leftrightarrow a > 4\\
Vay\,a > 4\\
c)a = 7 + 4\sqrt 3 \left( {tmdk} \right)\\
= {\left( {2 + \sqrt 3 } \right)^2}\\
\Leftrightarrow \sqrt a = 2 + \sqrt 3 \\
\Leftrightarrow H = \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}} = \dfrac{{2 + \sqrt 3 - 4}}{{2 + \sqrt 3 - 2}}\\
= \dfrac{{\sqrt 3 - 2}}{{\sqrt 3 }}\\
= \dfrac{{3 - 2\sqrt 3 }}{3}\\
d)H = 5\\
\Leftrightarrow \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}} = 5\\
\Leftrightarrow \sqrt a - 4 = 5\sqrt a - 10\\
\Leftrightarrow 4\sqrt a = 6\\
\Leftrightarrow \sqrt a = \dfrac{3}{2}\\
\Leftrightarrow a = \dfrac{9}{4}\left( {tmdk} \right)\\
Vay\,a = \dfrac{9}{4}
\end{array}$