Đáp án:
Bài 1
a) Vì tam giác ABC là tam giác cân có
AM là đường trung tuyến
nên AM vừa là đường cao vừa là đường phân giác
=> Góc BAM = góc MAC
Xét ΔAMB và Δ MAC có
góc BAM = góc CAM ( CMT)
AM chung
AMB = góc AMC ( cùng bằng 90 độ )
Vậy Tam giác ABM = tam giác AMC ( c-g-v-g-n-k)
b) Xét tam giác AHM và tam giác AKM có
AM chung
Góc AHM =AKM ( = 90 độ)
HAM =MAK ( cmt câu a)
nên Tam giác AHM = tam giác AKM (c-h-g-n)
=> HM = MK
và BHM = MKC , góc B= C
Nên tam giác BHM = KMC
=> HB = KC
c) Ta có BP VUÔNG GÓC VỚI AC
và MK vuông góc với AC
Nên BP// MK
=> góc PBM = KMC
Mà KMC = HMB ( vÌ tam giác BHM = KMC )
Suy ra : PBM = góc HMB
Hay tam giác IBM cân tại I
Bài 2:
a) Ta có: AB⊥AC(ΔABC vuông tại A)
HK⊥AC(Gt)
Do đó: AB//HK(Định lí 1 từ vuông góc tới song song)
b) Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
KH=IH(gt)
AH chung
Do đó: ΔAKH=ΔAIH(hai cạnh góc vuông)
Suy ra: AK=AI(hai cạnh tương ứng)
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(Định nghĩa tam giác cân
d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực
tam giác AKC = tam giác AIC(c.c.c)
Mình xin ctlhn