Đáp án:
\(\begin{array}{l}
14,\\
\left( {2x - 1} \right)\left( {2x + 3} \right)\\
15,\\
\left( {4x + 3} \right)\left( {x + 3} \right)\\
16,\\
\left( {x - 2} \right)\left( {4x + 1} \right)\\
17,\\
\left( {x + 1} \right)\left( {3x - 2} \right)\\
18,\\
\left( {3x + 2} \right)\left( {2x + 1} \right)\\
19,\\
\left( {x - 4} \right)\left( {5x + 2} \right)\\
20,\\
\left( {x - 2y} \right)\left( {x + y} \right)\\
21,\\
\left( {x - y} \right)\left( {x - 2y} \right)\\
22,\\
\left( {x - 2y} \right).\left( {2x + y} \right)\\
23,\\
\left( {x + 2y} \right)\left( {2x + y} \right)\\
24,\\
2.\left( {x - y} \right)\left( {x + 2y} \right)
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
14,\\
4{x^2} + 4x - 3\\
= \left( {4{x^2} - 2x} \right) + \left( {6x - 3} \right)\\
= 2x.\left( {2x - 1} \right) + 3.\left( {2x - 1} \right)\\
= \left( {2x - 1} \right)\left( {2x + 3} \right)\\
15,\\
4{x^2} + 15x + 9\\
= \left( {4{x^2} + 3x} \right) + \left( {12x + 9} \right)\\
= x\left( {4x + 3} \right) + 3.\left( {4x + 3} \right)\\
= \left( {4x + 3} \right)\left( {x + 3} \right)\\
16,\\
4{x^2} - 7x - 2\\
= \left( {4{x^2} - 8x} \right) + \left( {x - 2} \right)\\
= 4x.\left( {x - 2} \right) + \left( {x - 2} \right)\\
= \left( {x - 2} \right)\left( {4x + 1} \right)\\
17,\\
3{x^2} + x - 2\\
= \left( {3{x^2} + 3x} \right) + \left( { - 2x - 2} \right)\\
= 3x\left( {x + 1} \right) - 2.\left( {x + 1} \right)\\
= \left( {x + 1} \right)\left( {3x - 2} \right)\\
18,\\
6{x^2} + 7x + 2\\
= \left( {6{x^2} + 4x} \right) + \left( {3x + 2} \right)\\
= 2x.\left( {3x + 2} \right) + \left( {3x + 2} \right)\\
= \left( {3x + 2} \right)\left( {2x + 1} \right)\\
19,\\
5{x^2} - 18x - 8\\
= \left( {5{x^2} - 20x} \right) + \left( {2x - 8} \right)\\
= 5x.\left( {x - 4} \right) + 2.\left( {x - 4} \right)\\
= \left( {x - 4} \right)\left( {5x + 2} \right)\\
20,\\
{x^2} - xy - 2{y^2}\\
= \left( {{x^2} - 2xy} \right) + \left( {xy - 2{y^2}} \right)\\
= x\left( {x - 2y} \right) + y\left( {x - 2y} \right)\\
= \left( {x - 2y} \right)\left( {x + y} \right)\\
21,\\
{x^2} - 3xy + 2{y^2}\\
= \left( {{x^2} - xy} \right) + \left( { - 2xy + 2{y^2}} \right)\\
= x\left( {x - y} \right) - 2y\left( {x - y} \right)\\
= \left( {x - y} \right)\left( {x - 2y} \right)\\
22,\\
2{x^2} - 3xy - 2{y^2}\\
= \left( {2{x^2} - 4xy} \right) + \left( {xy - 2{y^2}} \right)\\
= 2x.\left( {x - 2y} \right) + y.\left( {x - 2y} \right)\\
= \left( {x - 2y} \right).\left( {2x + y} \right)\\
23,\\
2{x^2} + 5xy + 2{y^2}\\
= \left( {2{x^2} + 4xy} \right) + \left( {xy + 2{y^2}} \right)\\
= 2x.\left( {x + 2y} \right) + y\left( {x + 2y} \right)\\
= \left( {x + 2y} \right)\left( {2x + y} \right)\\
24,\\
2{x^2} + 2xy - 4{y^2}\\
= 2.\left( {{x^2} + xy - 2{y^2}} \right)\\
= 2.\left[ {\left( {{x^2} - xy} \right) + \left( {2xy - 2{y^2}} \right)} \right]\\
= 2.\left[ {x.\left( {x - y} \right) + 2y.\left( {x - y} \right)} \right]\\
= 2.\left( {x - y} \right)\left( {x + 2y} \right)
\end{array}\)