Đáp án:
$\begin{array}{l}
a)\sqrt {8 + 2\sqrt {15} } - \sqrt {6 + 2\sqrt 5 } \\
= \sqrt {5 + 2\sqrt 5 .\sqrt 3 + 3} - \sqrt {5 + 2\sqrt 5 + 1} \\
= \sqrt {{{\left( {\sqrt 5 + \sqrt 3 } \right)}^2}} - \sqrt {{{\left( {\sqrt 5 + 1} \right)}^2}} \\
= \sqrt 5 + \sqrt 3 - \sqrt 5 - 1\\
= \sqrt 3 - 1\\
b)\sqrt {17 - 2\sqrt {72} } + \sqrt {19 + 2\sqrt {18} } \\
= \sqrt {9 - 2.\sqrt 9 .\sqrt 8 + 8} + \sqrt {{{\left( {\sqrt {18} + 1} \right)}^2}} \\
= \sqrt {{{\left( {\sqrt 9 - \sqrt 8 } \right)}^2}} + \sqrt {18} + 1\\
= 3 - 2\sqrt 2 + 3\sqrt 2 + 1\\
= 4 + \sqrt 2 \\
c)\sqrt {12 - 2\sqrt {32} } + \sqrt {9 + 4\sqrt 2 } \\
= \sqrt {{{\left( {\sqrt 8 - \sqrt 4 } \right)}^2}} + \sqrt {{{\left( {2\sqrt 2 + 1} \right)}^2}} \\
= \sqrt 8 - \sqrt 4 + 2\sqrt 2 + 1\\
= 2\sqrt 2 - 2 + 2\sqrt 2 + 1\\
= 4\sqrt 2 - 1\\
d)\sqrt {8 - 3\sqrt 7 } + \sqrt {4 - \sqrt 7 } \\
= \sqrt {\dfrac{{16 - 2.3\sqrt 7 }}{2}} + \sqrt {\dfrac{{8 - 2\sqrt 7 }}{2}} \\
= \dfrac{{\sqrt {{{\left( {3 - \sqrt 7 } \right)}^2}} }}{{\sqrt 2 }} + \dfrac{{\sqrt {{{\left( {\sqrt 7 - 1} \right)}^2}} }}{{\sqrt 2 }}\\
= \dfrac{{3 - \sqrt 7 + \sqrt 7 - 1}}{{\sqrt 2 }}\\
= \dfrac{2}{{\sqrt 2 }} = \sqrt 2 \\
e)\sqrt {4 - \sqrt 7 } - \sqrt {4 + \sqrt 7 } + \sqrt 2 \\
= \sqrt {\dfrac{{8 - 2\sqrt 7 }}{2}} - \sqrt {\dfrac{{8 + 2\sqrt 7 }}{2}} + \sqrt 2 \\
= \dfrac{{\sqrt {{{\left( {\sqrt 7 - 1} \right)}^2}} }}{{\sqrt 2 }} - \dfrac{{\sqrt {{{\left( {\sqrt 7 + 1} \right)}^2}} }}{{\sqrt 2 }} + \sqrt 2 \\
= \dfrac{{\sqrt 7 - 1 - \left( {\sqrt 7 + 1} \right)}}{{\sqrt 2 }} + \sqrt 2 \\
= - \sqrt 2 + \sqrt 2 \\
= 0\\
f)\sqrt {6 + \sqrt {11} } - \sqrt {6 - \sqrt {11} } + 3\sqrt 2 \\
= \sqrt {\dfrac{{12 + 2\sqrt {11} }}{2}} - \sqrt {\dfrac{{12 - 2\sqrt {11} }}{2}} + 3\sqrt 2 \\
= \dfrac{{\sqrt {{{\left( {\sqrt {11} + 1} \right)}^2}} }}{{\sqrt 2 }} - \dfrac{{\sqrt {{{\left( {\sqrt {11} - 1} \right)}^2}} }}{{\sqrt 2 }} + 3\sqrt 2 \\
= \dfrac{{\sqrt {11} + 1 - \sqrt {11} + 1}}{{\sqrt 2 }} + 3\sqrt 2 \\
= \sqrt 2 + 3\sqrt 2 \\
= 4\sqrt 2
\end{array}$
$\begin{array}{l}
g)\sqrt {8 - 2\sqrt {15} } - \sqrt {7 - 2\sqrt {10} } \\
= \sqrt {{{\left( {\sqrt 5 - \sqrt 3 } \right)}^2}} - \sqrt {{{\left( {\sqrt 5 - \sqrt 2 } \right)}^2}} \\
= \sqrt 5 - \sqrt 3 - \left( {\sqrt 5 - \sqrt 2 } \right)\\
= \sqrt 2 - \sqrt 3 \\
h)\sqrt {10 - 2\sqrt {21} } - \sqrt {9 - 2\sqrt {14} } \\
= \sqrt {{{\left( {\sqrt 7 - \sqrt 3 } \right)}^2}} - \sqrt {{{\left( {\sqrt 7 - \sqrt 2 } \right)}^2}} \\
= \sqrt 7 - \sqrt 3 - \sqrt 7 + \sqrt 2 \\
= \sqrt 2 - \sqrt 3 \\
i)\sqrt {5 + \sqrt {21} } - \sqrt {5 - \sqrt {21} } \\
= \sqrt {\dfrac{{10 + 2\sqrt {21} }}{2}} - \sqrt {\dfrac{{10 - 2\sqrt {21} }}{2}} \\
= \dfrac{{\sqrt {{{\left( {\sqrt 7 + \sqrt 3 } \right)}^2}} }}{{\sqrt 2 }} - \dfrac{{\sqrt {{{\left( {\sqrt 7 - \sqrt 3 } \right)}^2}} }}{{\sqrt 2 }}\\
= \dfrac{{\sqrt 7 + \sqrt 3 - \sqrt 7 + \sqrt 3 }}{{\sqrt 2 }}\\
= \dfrac{{2\sqrt 3 }}{{\sqrt 2 }}\\
= \sqrt 6
\end{array}$