Đáp án:
Giải thích các bước giải:
`B=(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}})(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1})`
ĐK: `x > 0, x \ne 1`
`B=(\frac{x}{2\sqrt{x}}-\frac{1}{2\sqrt{x}}).[\frac{\sqrt{x}(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)]]`
`B=(\frac{x-1}{2\sqrt{x}}).[\frac{\sqrt{x}(x-2\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}(x+2\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)]]`
`B=[\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{2\sqrt{x}}].[\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}]`
`B=[\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{2\sqrt{x}}].[\frac{-4x}{(\sqrt{x}-1)(\sqrt{x}+1)}]`
`B=-2\sqrt{x}`