`Từ c^2 + 2(ab - ac - bc) = 0`
`=> c^2 + 2ab - 2ac - 2bc = 0`
`Ta có:`
`(a^2 + (a - c)^2)/(b^2 + (b - c)^2)`
`= (a^2 + c^2 + 2ab - 2ac - 2bc + (a - c)^2)/(b^2 + c^2 + 2ab - 2ac - 2bc + (b - c)^2)`
`= ((a^2 - 2ac + c^2) + (a - c)^2 + (2ab - 2bc))/((b^2 - 2bc + c^2) + (b - c)^2 + (2ab - 2ac))`
`= (2(a - c)^2 + 2b(a - c))/(2(b - c)^2 + 2a(b - c))`
`= ((a - c)[2(a - c) + 2b])/((b - c)[2(b - c) + 2a]`
`= ((a - c)(2a - 2c + 2b))/((b - c)(2b - 2c + 2a)`
`= (a - c)/(b - c)`
$\text{Điều phải chứng minh}$